SEASIDE GROUNDWATER BASIN

SUSTAINABLE YIELD

Presented to the Seaside Basin Technical Advisory Committee February 13, 2019

SAFE YIELD

- Assumes the "safe" amount to pump cannot be more than the rate of natural recharge
- This is referred to as the "Water-Budget Myth"
- It is an oversimplification of information needed to understand the effects of using a groundwater system
- As human activities change the system, the components of the water budget (inflows, outflows, and changes in storage) change and must be accounted for in any management decision

GROUNDWATER (1988 – 2017)BUDGETNorthern
CoastalNorthern
Loastal

	Northern	Northern	Southern	Laguna			
	Coastal	Inland	Coastal	Seca			
	Subarea	Subarea	Subarea	Subarea	Total		
Recharge Source	Acre-feet per Year						
Basin Inflows							
Percolation from streams	0	0	0	0	0		
Deep Percolation							
Rainfall	510	1,670	130	900	3,210		
Irrigation & System Losses	150	20	100	10	280		
Injection wells	260	0	0	0	260		
Groundwater inflow							
From adjacent subareas	2,900	1,520	520	360	5,300		
From adjacent basins	130	400	50	770	1,350		
From offshore area	490	0	10	0	500		
Total inflows	4,440	3,610	810	2,040	10,900		
Basin Outflows							
Wells	3,660	70	170	680	4,580		
Groundwater outflow							
To adjacent subareas of the							
Basin	290	2,710	550	1,750	5,300		
To adjacent basins	280	1,310	70	490	2,150		
To offshore area	260	0	60	0	320		
Total outflows	4,490	4,090	850	2,920	12,350		
Storage Change							
Based on Inflows-Outflows	-50	-480	-40	-880	-1,450		

NATURAL FLOW SYSTEM CHANGES

We change the natural flow system by pumping water for use, changing recharge patterns by irrigation and urban development, changing the type of vegetation, and other activities

BALANCED SYSTEM

- Pumping starts and the groundwater system readjusts
- Initial response to pumping is change in storage
- If system comes to equilibrium, changes in storage stop and inflows will again balance outflows:
 - **Pumpage = Increased recharge + Decreased discharge**

UNBALANCED SYSTEM

- If system does not comes to equilibrium, changes in storage continue (i.e. falling groundwater levels):
 - Pumpage = Increased recharge + Decreased discharge + Decreased storage

SUSTAINABLE YIELD

- How much ground water available for use depends upon how changes in inflow and outflow affect the surrounding environment and what the users define as undesirable effects on the environment or groundwater system
 - Changes to inflows and outflows are very complex
 - Not possible to use the water budget to determine how much groundwater is available for use
 - Groundwater model is the best tool to use because it allows for spatial effects

SUBSURFACE FLOWS BETWEEN SUBAREAS, OCEAN & OTHER BASINS

LOCALIZED EFFECTS

Localized effects of pumping need to be accounted for

same pumping

groundwater levels < sea level

Greater impact on local groundwater levels

groundwater levels > sea level

Lesser impact on local groundwater levels

MODELING APPROACH FOR DETERMINING SUSTAINABLE YIELD

- Task 1: Develop Operational Parameters & Management Targets
- Operational parameters include how each well is expected to be pumped in the future

Management targets are groundwater levels that the basin should be managed to. Examples are:

- Meet protective groundwater elevations at the coast
- To stop declining groundwater levels
- Recover groundwater levels in the basin to a certain level

MODELING APPROACH FOR DETERMINING SUSTAINABLE YIELD

Task 2: Extend Predictive Model Climate Extend Historical Hydrology Baseline Scenario

198	2008 2)17		042	
	Hydrology	Hydrolog	y repeated	repeated		
Historic Model		Predictive Model		2048		
	Hydrology		1987 – 201	7 Hydrology r	epeated Option 1	

Option 2 \rightarrow 2070

Convert Historical Climate Baseline Scenario Model to Future Climate Condition Model (Optional)

Task 3: Incorporate Sea Level Rise at Ocean Boundaries (Optional)

MODELING APPROACH FOR DETERMINING SUSTAINABLE YIELD

Task 4: Incorporate All Existing & Approved/Planned Supplemental Supply Projects into Baseline Model

Task 5: Optimization Scenario Simulations

Use Sustainable Optimization Model to optimize pumping to achieve management targets

Prepare Scenario Inputs - Need TAC input Two yield numbers will result

- Interim Yield needed to achieve management targets (lower than Sustainable Yield)
- A Sustainable Yield that maintains targets (this will be a higher yield than the Interim Yield

Task 6: Prepare Technical MemoTask 7: Attend TAC and Board Meetings

QUESTIONS?

